Search results
Results From The WOW.Com Content Network
A probability distribution is not uniquely determined by the moments E[X n] = e nμ + 1 / 2 n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [ 4 ] In fact, there is a whole family of distributions with the same moments as the log-normal distribution.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...
In mathematics, addition and subtraction logarithms or Gaussian logarithms can be utilized to find the logarithms of the sum and difference of a pair of values whose logarithms are known, without knowing the values themselves. [1] Their mathematical foundations trace back to Zecchini Leonelli [2] [3] and Carl Friedrich Gauss [4] [1] [5] in the ...
(The conversion to log form is expensive, but is only incurred once.) Multiplication arises from calculating the probability that multiple independent events occur: the probability that all independent events of interest occur is the product of all these events' probabilities.
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
In other words, if N is a random variable with a Poisson distribution, and X i, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then = has a negative binomial distribution.
For illustrative purposes, if base-10 logarithm were used instead of natural logarithm in the above transformation and the same symbols (a and b) are used to denote the regression coefficients, then a unit increase in X would lead to a times increase in Y on an average. If b were 1, then this implies a 10-fold increase in Y for a unit increase in X
File change date and time: 3 November 2014: Date and time of digitizing: 3 November 2014: Software used: Artifex Ghostscript 8.54 PDF Writer: Conversion program: Artifex Ghostscript 8.54: Encrypted: no: Page size: 784 x 496 pts: Version of PDF format: 1.4