Ad
related to: 1 gauss to tesla time to charge formula 2 series
Search results
Results From The WOW.Com Content Network
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The tesla is named after Nikola Tesla. As with every SI unit named for a person, its symbol starts with an upper case letter (T), but when written in full, it follows the rules for capitalisation of a common noun ; i.e., tesla becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.
The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.
Position vectors r and r′ used in the calculation. Retarded time t r or t′ is calculated with a "speed-distance-time" calculation for EM fields.. If the EM field is radiated at position vector r′ (within the source charge distribution), and an observer at position r measures the EM field at time t, the time delay for the field to travel from the charge distribution to the observer is |r ...
The law was first [1] formulated by Joseph-Louis Lagrange in 1773, [2] followed by Carl Friedrich Gauss in 1835, [3] both in the context of the attraction of ellipsoids. It is one of Maxwell's equations, which forms the basis of classical electrodynamics. [note 1] Gauss's law can be used to derive Coulomb's law, [4] and vice versa.