When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink.

  3. Organic Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Organic_Rankine_cycle

    T-s diagram for the ideal/real ORC. The working principle of the organic Rankine cycle is the same as that of the Rankine cycle: the working fluid is pumped to a boiler where it is evaporated, passed through an expansion device (turbine, [3] screw, [4] scroll, [5] or other expander), and then through a condenser heat exchanger where it is finally re-condensed.

  4. Enthalpy–entropy chart - Wikipedia

    en.wikipedia.org/wiki/Enthalpy–entropy_chart

    The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be easily calculated using the h–s chart when the process is considered to be ideal (which is the case normally when calculating enthalpies, entropies, etc.

  5. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    Rankine cycle: steam power plants The Rankine cycle is the cycle used in steam turbine power plants. The overwhelming majority of the world's electric power is produced with this cycle. Since the cycle's working fluid, water, changes from liquid to vapor and back during the cycle, their efficiencies depend on the thermodynamic properties of water.

  6. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    Cycle Isentropic step Description Ideal Rankine cycle: 1→2: Isentropic compression in a pump: Ideal Rankine cycle: 3→4: Isentropic expansion in a turbine: Ideal Carnot cycle: 2→3: Isentropic expansion Ideal Carnot cycle: 4→1: Isentropic compression Ideal Otto cycle: 1→2: Isentropic compression Ideal Otto cycle: 3→4: Isentropic ...

  7. Vapor quality - Wikipedia

    en.wikipedia.org/wiki/Vapor_quality

    Vapor quality is an important quantity during the adiabatic expansion step in various thermodynamic cycles (like Organic Rankine cycle, Rankine cycle, etc.). Working fluids can be classified by using the appearance of droplets in the vapor during the expansion step.

  8. Thermal power station - Wikipedia

    en.wikipedia.org/wiki/Thermal_power_station

    A Rankine cycle with a two-stage steam turbine and a single feed water heater. The energy efficiency of a conventional thermal power station is defined as saleable energy produced as a percent of the heating value of the fuel consumed. A simple cycle gas turbine achieves energy conversion efficiencies from 20 to 35%. [5]

  9. Feedwater heater - Wikipedia

    en.wikipedia.org/wiki/Feedwater_heater

    A Rankine cycle with two steam turbines and a single open feedwater heater. A feedwater heater is a power plant component used to pre-heat water delivered to a steam generating boiler. [1] [2] [3] Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system ...