Ads
related to: algebraic properties examples of functionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of ...
Transcendental functions are functions that are not algebraic. Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions.
These properties concern how the function is affected by arithmetic operations on its argument. The following are special examples of a homomorphism on a binary operation: Additive function: preserves the addition operation: f (x + y) = f (x) + f (y). Multiplicative function: preserves the multiplication operation: f (xy) = f (x)f (y).
Function spaces play a fundamental role in advanced mathematical analysis, by allowing the use of their algebraic and topological properties for studying properties of functions. For example, all theorems of existence and uniqueness of solutions of ordinary or partial differential equations result of the study of function spaces.
Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.
In calculus and mathematical analysis, algebraic operation is also used for the operations that may be defined by purely algebraic methods. For example, exponentiation with an integer or rational exponent is an algebraic operation, but not the general exponentiation with a real or complex exponent. Also, the derivative is an operation that is ...
Ad
related to: algebraic properties examples of functionsstudy.com has been visited by 100K+ users in the past month