When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital spaceflight - Wikipedia

    en.wikipedia.org/wiki/Orbital_spaceflight

    It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation ...

  3. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately 35,786 kilometers (22,236 mi).

  4. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    A satellite in a low orbit (or a low part of an elliptical orbit) moves more quickly with respect to the surface of the planet than a satellite in a higher orbit (or a high part of an elliptical orbit), due to the stronger gravitational attraction closer to the planet.

  5. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    [nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]

  6. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    The orientation of the orbit in space is specified by three angles: The inclination i, of the orbital plane with the fundamental plane (this is usually a planet or moon's equatorial plane, or in the case of a solar orbit, the Earth's orbital plane around the Sun, known as the ecliptic.) Positive inclination is northward, while negative ...

  8. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  9. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    What is left are two quantities: P, the period of Earth's orbit or the sidereal year, a quantity known precisely by measurement over centuries, and m, the mass of the Earth–Moon system. Again plugging in the measured values as they were known in Gauss's time, P = 365.256 3835 days, m = ⁠ 1 / 354 710 ⁠ solar masses, [ clarification needed ...