Search results
Results From The WOW.Com Content Network
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
Matrix theory is the branch of mathematics that focuses on the study of matrices. It was initially a sub-branch of linear algebra, but soon grew to include subjects related to graph theory, algebra, combinatorics and statistics.
For a commutative ring and an element , a matrix factorization of is a pair of n-by-n matrices , such that =. This can be encoded more generally as a Z / 2 {\displaystyle \mathbb {Z} /2} - graded S {\displaystyle S} -module M = M 0 ⊕ M 1 {\displaystyle M=M_{0}\oplus M_{1}} with an endomorphism
The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. [2] Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems ...
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .
Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the composition of the corresponding linear maps, and the product of a matrix and a column matrix is the column matrix representing the result of applying the represented linear map to the represented vector. It follows that the theory of finite ...
Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, [2] to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra , and as such has numerous applications in many areas of mathematics, as well as in applied ...