When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.

  4. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    For example, consider fitting a line ... One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components ...

  5. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size).

  6. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear ...

  7. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals ^ estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals.

  8. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  9. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    The key reason for studentizing is that, in regression analysis of a multivariate distribution, the variances of the residuals at different input variable values may differ, even if the variances of the errors at these different input variable values are equal.