Search results
Results From The WOW.Com Content Network
The amount of reactive power supplied by a shunt capacitor is proportional to the square of the line voltage, so the capacitor contributes less under low-voltage conditions (frequently caused by the lack of reactive power). This is a serious drawback, as the supply of reactive power by a capacitor drops when it is most needed; [11]
Reactive power does not do any work, so it is represented as the imaginary axis of the vector diagram. Active power does do work, so it is the real axis. The unit for power is the watt (symbol: W). Apparent power is often expressed in volt-amperes (VA) since it is the product of RMS voltage and RMS current. The unit for reactive power is var ...
In practice, the prime mover (a power source that drives the generator) is designed for less active power than the generator is capable of (due to the fact that in real life generator always has to deliver some reactive power [2]), so a prime mover limit (a vertical dashed line on the illustration) changes the constraints somewhat (in the ...
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
In electric power transmission and distribution, volt-ampere reactive (var) is a unit of measurement of reactive power. Reactive power exists in an AC circuit when the current and voltage are not in phase.
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
Transferring a large amount of reactive power Q to inductive loads makes the line current lag voltage, and the voltage regulation is characterized by decrease in voltage magnitude. In transferring a large amount of real power P to real loads, current is mostly in phase with voltage.