Search results
Results From The WOW.Com Content Network
Three interlocking golden rectangles inscribed in a convex regular icosahedron. The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.
As it turns out, the icosahedron occupies less of the sphere's volume (60.54%) than the dodecahedron (66.49%). [12] The dihedral angle of a regular icosahedron can be calculated by adding the angle of pentagonal pyramids with regular faces and a pentagonal antiprism. The dihedral angle of a pentagonal antiprism and pentagonal pyramid between ...
In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations (or honeycombs) in hyperbolic 3-space.With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.
The dodecahedron and the icosahedron form a dual pair. If a polyhedron has Schläfli symbol {p, q}, then its dual has the symbol {q, p}. Indeed, every combinatorial property of one Platonic solid can be interpreted as another combinatorial property of the dual.
The icosahedron and dodecahedron are dual to each other. The small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other. The Schläfli symbol of the dual is just the original written backwards, for example the dual of {5, 3} is {3, 5}.
In the Timaeus, his major cosmological dialogue, the Platonic solid associated with water is the icosahedron which is formed from twenty equilateral triangles. This makes water the element with the greatest number of sides, which Plato regarded as appropriate because water flows out of one's hand when picked up, as if it is made of tiny little ...
In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol {3, 5 ⁄ 2} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.