When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Learning analytics - Wikipedia

    en.wikipedia.org/wiki/Learning_analytics

    Data science offers computational methods and techniques for data collection, pre-processing, analysis, and presentation. Theory is typically drawn from the literature in the learning sciences, education, psychology, sociology, and philosophy. The design dimension of the model includes: learning design, interaction design, and study design.

  3. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...

  4. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    The probabilistic model of LSA does not match observed data: LSA assumes that words and documents form a joint Gaussian model (ergodic hypothesis), while a Poisson distribution has been observed. Thus, a newer alternative is probabilistic latent semantic analysis , based on a multinomial model, which is reported to give better results than ...

  5. Learning object metadata - Wikipedia

    en.wikipedia.org/wiki/Learning_object_metadata

    Learning Object Metadata is a data model, usually encoded in XML, used to describe a learning object and similar digital resources used to support learning. The purpose of learning object metadata is to support the reusability of learning objects, to aid discoverability , and to facilitate their interoperability, usually in the context of ...

  6. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...

  7. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  8. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  9. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    The Database of Original & Non-Theoretical Uses of Topology (DONUT) is a database of scholarly articles featuring practical applications of topological data analysis to various areas of science. DONUT was started in 2017 by Barbara Giunti, Janis Lazovskis, and Bastian Rieck, [ 154 ] and as of October 2023 currently contains 447 articles. [ 155 ]