Ad
related to: physics work power and energy test
Search results
Results From The WOW.Com Content Network
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices ( electrochemical cells ) or different metals junctions [ clarification needed ] generating an electromotive force .
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power, like mechanical power, is the rate of doing work, measured in watts, and represented by the letter P. The term wattage is used colloquially to mean "electric power in watts."
Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre , is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule , which is not used for torque.
A direct consequence of the closed path test is that the work done by a conservative force on a particle moving between any two points does not depend on the path taken by the particle. This is illustrated in the figure to the right: The work done by the gravitational force on an object depends only on its change in height because the ...
In physics and chemistry, it is common to measure energy on the atomic scale in the non-SI, but convenient, units electronvolts (eV). 1 eV is equivalent to the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in a vacuum. It is common to use the SI magnitude prefixes (e.g. milli-, mega- etc) with ...
astrophysics, the physics in the universe, including the properties and interactions of celestial bodies in astronomy; atmospheric physics is the application of physics to the study of the atmosphere; space physics is the study of plasmas as they occur naturally in the Earth's upper atmosphere (aeronomy) and within the Solar System