Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.
The model was later extended to treat noise (misclassified samples). An important innovation of the PAC framework is the introduction of computational complexity theory concepts to machine learning.
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression [1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations).
The R package "dbscan" includes a C++ implementation of OPTICS (with both traditional dbscan-like and ξ cluster extraction) using a k-d tree for index acceleration for Euclidean distance only. Python implementations of OPTICS are available in the PyClustering library and in scikit-learn. HDBSCAN* is available in the hdbscan library.
The template for any binary confusion matrix uses the four kinds of results discussed above (true positives, false negatives, false positives, and true negatives) along with the positive and negative classifications.
NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators. [15] [46] This provides a theoretical foundation for using NMF for data clustering. However, k-means does not enforce non-negativity on its centroids, so the ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.