Search results
Results From The WOW.Com Content Network
The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of 1 / 1 − x is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of 1 / x at a = 1 is
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives dr / dx = 0 and dθ / dx = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.
The Maclaurin series of an even function includes only even powers. The Maclaurin series of an odd function includes only odd powers. The Fourier series of a periodic even function includes only cosine terms. The Fourier series of a periodic odd function includes only sine terms. The Fourier transform of a purely real-valued even function is ...
[1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...
For | x – c | = r, there is no general statement on the convergence of the series. However, Abel's theorem states that if the series is convergent for some value z such that | z – c | = r, then the sum of the series for x = z is the limit of the sum of the series for x = c + t (z – c) where t is a real variable less than 1 that tends to 1.