Ads
related to: steels with high yield strength material are needed
Search results
Results From The WOW.Com Content Network
It is valued for its strength to weight ratio. [citation needed] The "HY" steels are designed to possess a high yield strength (strength in resisting permanent plastic deformation). HY-80 is accompanied by HY-100 and HY-130 with each of the 80, 100 and 130 referring to their yield strength in ksi (80,000 psi, 100,000 psi and 130,000 psi). HY-80 ...
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
The development of Eglin steel was commissioned to find a low-cost replacement for strong and tough but expensive superalloy steels such as AF-1410, Aermet-100, HY-180, and HP9-4-20/30. A high-performance casing material is required so the weapon survives the high impact speeds required for deep penetration.
High-strength steels generally fall into three basic categories, classified by the strengthening mechanism employed. 1- solid-solution-strengthened steels (rephos steels) 2- grain-refined steels or high strength low alloy steels (HSLA) 3- transformation-hardened steels Transformation-hardened steels are the third type of high-strength steels.
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The next set of 3 digits gives the steel's minimum yield strength. So S355 has a minimum yield strength of 355 MPa for the smallest thickness range covered by the relevant standard – i.e. EN10025. [2] Below is a table indicating the most common application codes.
This microstructure gives the steels a low yield strength, high rate of work hardening, and good formability. [1] Microalloyed steels: Steels which contain very small additions of niobium, vanadium, and/or titanium to obtain a refined grain size and/or precipitation hardening. A common type of micro-alloyed steel is improved-formability HSLA.
Mangalloy has fair yield strength but very high tensile strength, typically anywhere between 350 and 900 megapascals (MPa), which rises rapidly as it work hardens. Unlike other forms of steel, when stretched to the breaking point, the material does not "neck down" (get smaller at the weakest point) and then tear apart.