When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electrical reactance - Wikipedia

    en.wikipedia.org/wiki/Electrical_reactance

    In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...

  3. Reactances of synchronous machines - Wikipedia

    en.wikipedia.org/wiki/Reactances_of_synchronous...

    The state is very brief, as the current in the damper winding quickly decays allowing the armature flux to enter the rotor poles only. The generator goes into transient state; in the transient state (′) the flux is still out of the field winding of the rotor. The transient state decays to steady-state in few cycles. [6]

  4. Foster's reactance theorem - Wikipedia

    en.wikipedia.org/wiki/Foster's_reactance_theorem

    Foster's reactance theorem is an important theorem in the fields of electrical network analysis and synthesis. The theorem states that the reactance of a passive, lossless two-terminal ( one-port ) network always strictly monotonically increases with frequency.

  5. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  6. Short circuit ratio (synchronous generator) - Wikipedia

    en.wikipedia.org/wiki/Short_circuit_ratio...

    Higher SCR requires lower reactance that in practice means a larger air gap. [5]Both high and low levels of SCR have their benefits: [6] low SCR: in case of a short circuit, the current is proportional to SCR, therefore generators with low SCR require less protection and thus are cheaper;

  7. Impedance matching - Wikipedia

    en.wikipedia.org/wiki/Impedance_matching

    Note, , the reactance in parallel, has a negative reactance because it is typically a capacitor. This gives the L-network the additional feature of harmonic suppression since it is a low pass filter too. The inverse connection (impedance step-up) is simply the reverse—for example, reactance in series with the source.

  8. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    As an example of how per-unit is used, consider a three-phase power transmission system that deals with powers of the order of 500 MW and uses a nominal voltage of 138 kV for transmission. We arbitrarily select S b a s e = 500 M V A {\displaystyle S_{\mathrm {base} }=500\,\mathrm {MVA} } , and use the nominal voltage 138 kV as the base voltage ...

  9. Network synthesis - Wikipedia

    en.wikipedia.org/wiki/Network_synthesis

    Bayard synthesis is a state-space synthesis method based on the Gauss factorisation procedure. This method returns a synthesis using the minimum number of resistors and contains no gyrators. However, the method is non-canonical and will, in general, return a non-minimal number of reactance elements. [88]