Search results
Results From The WOW.Com Content Network
Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the square of the current.
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]
By varying the current and the length of the wire he deduced that the heat produced was proportional to the square of the current multiplied by the electrical resistance of the wire. . This relationship is known as Joule's Law. [20]: 36 The SI unit of energy was subsequently named the joule and given the symbol J.
Joule's first law, also known as the Joule effect, is a physical law expressing the relationship between the heat generated by the current flowing through a conductor. The heating effect of conductors carrying currents is known as Joule heating , named for James Prescott Joule .
Running current through a material with resistance creates heat, in a phenomenon called Joule heating. In this picture, a cartridge heater, warmed by Joule heating, is glowing red hot. Resistors (and other elements with resistance) oppose the flow of electric current; therefore, electrical energy is required to push current through the resistance.
Because the conduction of current is related to Joule heating of the conducting body, according to Joule's first law, the temperature of a conducting body may change when it carries a current. The dependence of resistance on temperature therefore makes resistance depend upon the current in a typical experimental setup, making the law in this ...
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
Copper losses result from Joule heating and so are also referred to as "I squared R losses", in reference to Joule's First Law.This states that the energy lost each second, or power, increases as the square of the current through the windings and in proportion to the electrical resistance of the conductors.