When.com Web Search

  1. Ads

    related to: finding slope using derivatives practice pdf problems 6th class guide
    • Pricing Plans

      View the Pricing Of Our Plans And

      Select the One You Need.

    • Videos & Lessons

      View the Available Lessons And

      Select the One You Prefer.

Search results

  1. Results From The WOW.Com Content Network
  2. Slope field - Wikipedia

    en.wikipedia.org/wiki/Slope_field

    Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  7. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.

  8. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  9. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    A linear function () = + has a constant rate of change equal to its slope a, so its derivative is the constant function ′ =. The fundamental idea of differential calculus is that any smooth function f ( x ) {\displaystyle f(x)} (not necessarily linear) can be closely approximated near a given point x = c {\displaystyle x=c} by a unique linear ...