Search results
Results From The WOW.Com Content Network
Hydrogen gas is very rare in Earth's atmosphere (around 0.53 ppm on a molar basis [103]) because of its light weight, which enables it to escape the atmosphere more rapidly than heavier gases. However, hydrogen, usually in the form of water, is the third most abundant element on the Earth's surface, [104] mostly in the form of chemical ...
Solid hydrogen is the solid state of the element hydrogen. At standard pressure , this is achieved by decreasing the temperature below hydrogen's melting point of 14.01 K (−259.14 °C; −434.45 °F).
Liquid hydrogen is typically used as a concentrated form of hydrogen storage. Storing it as liquid takes less space than storing it as a gas at normal temperature and pressure. However, the liquid density is very low compared to other common fuels. Once liquefied, it can be maintained as a liquid for some time in thermally insulated containers. [6]
Hydrogen fluoride is lighter than air and could theoretically be used as a lifting gas. However, it is extremely corrosive, highly toxic, expensive, is heavier than other lifting gases, and has a low boiling point of 19.5 °C. Its use would therefore be impractical.
Since hydrogen is a lighter-than-air gas, it collects under roofs and overhangs (typically referred to as trapping sites), where it forms an explosion hazard. [14] Many individuals are familiar with protecting plants from heavier-than-air vapors, but are unfamiliar with "looking up", and is therefore of particular note. [33]
Oxygen is more electronegative than carbon and hydrogen, [13] causing a partial negative (δ-) and positive charge (δ+) on the oxygen and remainder of the molecule, respectively. [ 3 ] [ 5 ] The δ- orienttowards the δ+ causing the acetone molecules to prefer to align in a few configurations in a δ- to δ+ orientation (pictured left).
Hydrogen production from natural gas and heavier hydrocarbons is achieved by partial oxidation. A fuel-air or fuel-oxygen mixture is partially combusted, resulting in a hydrogen- and carbon monoxide-rich syngas. More hydrogen and carbon dioxide are then obtained from carbon monoxide (and water) via the water-gas shift reaction. [35]
Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 10 15 tonnes). [19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O