When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    If for any point [,] there is a point in [,] [,] at distance less than of , and similarly for points on the other edges, and then the triangle is said to be -slim. A definition of a δ {\displaystyle \delta } -hyperbolic space is then a geodesic metric space all of whose geodesic triangles are δ {\displaystyle \delta } -slim.

  3. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient.

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.

  5. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    Choose a line (the x-axis) in the hyperbolic plane (with a standardized curvature of -1) and label the points on it by their distance from an origin (x=0) point on the x-axis (positive on one side and negative on the other). For any point in the plane, one can define coordinates x and y by dropping a perpendicular onto the x-axis.

  6. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    If the two points are not on a vertical line: Draw the radial line (half-circle) between the two given points as in the previous case. Construct a tangent to that line at the non-central point. Drop a perpendicular from the given center point to the x-axis. Find the intersection of these two lines to get the center of the model circle.

  7. Poincaré metric - Wikipedia

    en.wikipedia.org/wiki/Poincaré_metric

    It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces. There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane.

  8. Hypercycle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Hypercycle_(geometry)

    In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis). Given a straight line L and a point P not on L , one can construct a hypercycle by taking all points Q on the same side of L as P , with perpendicular distance to L equal to that ...

  9. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane