Search results
Results From The WOW.Com Content Network
This is the reason why the melting and boiling points of water are much higher than those of other analogous compounds like hydrogen sulfide. They also explain its exceptionally high specific heat capacity (about 4.2 J/(g·K)), heat of fusion (about 333 J/g), heat of vaporization (2257 J/g), and thermal conductivity (between 0.561 and 0.679 W ...
Water is the chemical substance with chemical formula H 2 O; one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. [26] Water is a tasteless, odorless liquid at ambient temperature and pressure. Liquid water has weak absorption bands at wavelengths of around 750 nm which cause it to appear to have a blue color. [4]
A solution in which the H 3 O + and OH − concentrations equal each other is considered a neutral solution. In general, the pH of the neutral point is numerically equal to 1 / 2 pK w. Pure water is neutral, but most water samples contain impurities. If an impurity is an acid or base, this will affect the concentrations of hydronium ion ...
Animation of a strong acid–strong base neutralization titration (using phenolphthalein).The equivalence point is marked in red. In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react with an equivalent quantity of each other.
In pure water, there is an equal number of hydroxide and H + ions, so it is a neutral solution. At 25 °C (77 °F), pure water has a pH of 7 and a pOH of 7 (this varies when the temperature changes: see self-ionization of water). A pH value less than 7 indicates an acidic solution, and a pH value more than 7 indicates a basic solution. [7]
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
Pure water and a solution of NaCl in pure water are both neutral, since dissociation of water produces equal numbers of both ions. However the pH of the neutral NaCl solution will be slightly different from that of neutral pure water because the hydrogen and hydroxide ions' activity is dependent on ionic strength, so K w varies with ionic strength.
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [5] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.