Search results
Results From The WOW.Com Content Network
A guide to the recoil from the cartridge, and an indicator of bullet penetration potential. The .30-06 Springfield (at 2.064 lbf-s) is considered the upper limit for tolerable recoil for inexperienced rifle shooters. [2] Chg: Propellant charge, in grains; Dia: Bullet diameter, in inches; BC: Ballistic coefficient, G1 model; L: Case length (mm)
Example of a ballistic table for a given 7.62×51mm NATO load. Bullet drop and wind drift are shown both in mrad and MOA.. A ballistic table or ballistic chart, also known as the data of previous engagements (DOPE) chart, is a reference data chart used in long-range shooting to predict the trajectory of a projectile and compensate for physical effects of gravity and wind drift, in order to ...
The method estimates the ballistic coefficient related to the drag model of the Ingalls tables. When matching an actual projectile against the drawn caliber radii of Chart No. 1, it will provide i and by using Chart No. 2, C can be quickly calculated. Coxe and Beugless used the variable C for ballistic coefficient. [54] [9]
Most VLD bullets are used in rifles. VLD bullets typically have a ballistic coefficient greater than 0.5, although the threshold is undefined. [1] Bullets with a lower drag coefficient decelerate less rapidly. A low drag coefficient flattens the projectile's trajectory and also markedly decreases the lateral drift caused by crosswinds. The ...
With a 165-grain bullet, the 6.8 Western is capable of matching the muzzle velocity of a .270 Winchester loaded with a 150-grain bullet. The higher ballistic coefficient of the 6.8 Western results in a flatter trajectory at distances beyond 600 yards, which may be controversial for hunting purposes. [7]
The concept historically originates from the idea that a lesser hit with a harder hitting caliber will be more likely to end a firefight in a real life situation. However, modern ballistic studies have shown no noticeable difference in terminal performance correlating to the recoil difference between typical minor and major handgun calibers. [7]
The smaller .172 bullet typically has a much lower ballistic coefficient than other typical varmint calibers, such as that of the .223 Remington. Because of this, the .172 bullet loses velocity slightly sooner and is more sensitive to wind; but by no means does this render the cartridge useless.
An example of such a special .375 caliber extreme range bullet is the German CNC manufactured mono-metal 26.44 gram (408 gr) .375 Viking (G1 BC 1.537; this Ballistic coefficient (BC) is calculated by its designer, Mr. Lutz Möller, and not proven by Doppler radar measurements). This bullet has since exhibited dynamic stability problems and is ...