Search results
Results From The WOW.Com Content Network
A petrographic microscope, which is an optical microscope fitted with cross-polarizing lenses, a conoscopic lens, and compensators (plates of anisotropic materials; gypsum plates and quartz wedges are common), for crystallographic analysis. Optical mineralogy is the study of minerals and rocks by measuring their optical properties.
Optical properties of common minerals Name Crystal system Indicatrix Optical sign Birefringence Color in plain polars Anorthite: Triclinic: Biaxial (-) 0.013
The method uses the Michel-Lévy interference colour chart to determine thickness, typically using quartz as the thickness gauge because it is one of the most abundant minerals. When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity ...
Michel-Lévy interference colour chart issued by Zeiss Microscopy. In optical mineralogy, an interference colour chart, also known as the Michel-Levy chart, is a tool first developed by Auguste Michel-Lévy to identify minerals in thin section using a petrographic microscope.
Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the processes of mineral origin and formation, classification of minerals, their geographical distribution, as ...
Mineralogy applies principles of chemistry, geology, physics and materials science to the study of minerals. Mineralogy [n 1] is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts.
Pyrrhotite, and other opaque minerals can be identified optically using a reflected light ore microscope. [19] The following optical properties [20] are representative of polished/puck sections using ore microscopy: Photomicrograph of pyrrhotite under reflected light appearing as cream-pink to beige irregular anhedral masses (5x/0.12 POL).
The measured optical properties of Aleutite were found through reflected light. The mineral had high values of refractive indices which is typical of arsenates and vanadates. Reflectance measurements were made using a SiC standard in air which ranged from 400–700 nm.