When.com Web Search

  1. Ads

    related to: triangle sum theorem lesson

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    Triangle area property: The area of a triangle can be as large as we please. Three points property: Three points either lie on a line or lie on a circle. Pythagoras' theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides. [1]

  3. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries: Some hyperbolic triangles have no circumscribed circle , this is the case when at least one of its vertices is an ideal point or when all of its vertices lie on a horocycle or ...

  4. Saccheri–Legendre theorem - Wikipedia

    en.wikipedia.org/wiki/Saccheri–Legendre_theorem

    In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°. [1] Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The triangle A'B'C' is the polar triangle corresponding to triangle ABC. A very important theorem (Todhunter, [1] Art.27) proves that the angles and sides of the polar triangle are given by ′ =, ′ =, ′ =, ′ =, ′ =, ′ =. Therefore, if any identity is proved for ABC then we can immediately derive a second identity by applying the ...

  8. Category:Theorems about triangles - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Marden's theorem; Maxwell's theorem (geometry) Menelaus's theorem; Midpoint theorem (triangle) Mollweide's formula; Morley's trisector theorem; N. Napoleon's theorem; P.

  9. Sylvester's triangle problem - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_triangle_problem

    Sylvester's theorem or Sylvester's formula describes a particular interpretation of the sum of three pairwise distinct vectors of equal length in the context of triangle geometry. It is also referred to as Sylvester's (triangle) problem in literature, when it is given as a problem rather than a theorem.