Search results
Results From The WOW.Com Content Network
For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b, and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter ...
Circumference: the length of one circuit along the circle, or the distance around the circle. Diameter: a line segment whose endpoints lie on the circle and that passes through the centre; or the length of such a line segment. This is the largest distance between any two points on the circle.
1.1 Formula. 1.1.1 In polar ... the circumference of the circle is C = 2 ... For example, the visual above showing an object at the top of a semicircle would be ...
The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is π R 2 {\displaystyle \pi R^{2}} . Given the area of a non-circular object A , one can calculate its area-equivalent radius by setting
If and are the radii of the small semicircles of the arbelos, the radius of an Archimedean circle is equal to = + This radius is thus = +.. The Archimedean circle with center (as in the figure at right) is tangent to the tangents from the centers of the small semicircles to the other small semicircle.