Search results
Results From The WOW.Com Content Network
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of ...
The convergence rate of the bisection method could possibly be improved by using a different solution estimate. The regula falsi method calculates the new solution estimate as the x-intercept of the line segment joining the endpoints of the function on the current bracketing interval. Essentially, the root is being approximated by replacing the ...
Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
In this example, Aitken's method is applied to a sublinearly converging series and accelerates convergence considerably. The convergence is still sublinear, but much faster than the original convergence: the first A [ X ] {\textstyle A[X]} value, whose computation required the first three X {\textstyle X} values, is closer to the limit than the ...