Search results
Results From The WOW.Com Content Network
Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces. [1] Radioactive decay is a random process at the level of single atoms.
Uranium–uranium dating is a radiometric dating technique which compares two isotopes of uranium (U) in a sample: uranium-234 (234 U) and uranium-238 (238 U). It is one of several radiometric dating techniques exploiting the uranium radioactive decay series, in which 238 U undergoes 14 alpha and beta decay events on the way to the stable isotope 206 Pb.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
An alpha particle with a speed of 1.5×10 7 m/s within a nuclear diameter of approximately 10 −14 m will collide with the barrier more than 10 21 times per second. However, if the probability of escape at each collision is very small, the half-life of the radioisotope will be very long, since it is the time required for the total probability ...
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.
In contrast to beta decay, the fundamental interactions responsible for alpha decay are a balance between the electromagnetic force and nuclear force. Alpha decay results from the Coulomb repulsion [4] between the alpha particle and the rest of the nucleus, which both have a positive electric charge, but which is kept in check by the nuclear force.
In contrast, a charged pion can only decay through the weak interaction, and so lives about 10 −8 seconds, or a hundred million times longer than a neutral pion. [10] (p30) A particularly extreme example is the weak-force decay of a free neutron, which takes about 15 minutes. [10] (p28)