When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regiomontanus' angle maximization problem - Wikipedia

    en.wikipedia.org/wiki/Regiomontanus'_angle...

    In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.

  3. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60639° and the crank-rod angle is 88.21832°. Clearly, in this example, the angle between the crank and the rod is not a right angle. Summing the angles of the triangle 88.21832° + 18.60639° + 73.17530° gives 180.00000°.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Tractrix - Wikipedia

    en.wikipedia.org/wiki/Tractrix

    The arc length of one branch between x = x 1 and x = x 2 is a ln ⁠ y 1 / y 2 ⁠. The area between the tractrix and its asymptote is ⁠ π a 2 / 2 ⁠, which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...

  6. Mathematical discussion of rangekeeping - Wikipedia

    en.wikipedia.org/wiki/Mathematical_discussion_of...

    Angle on the bow is the angle made by the ship's course and the line of sight (see Figure 1). The angle on the bow was usually estimated based on the observational experience of the observer. In some cases, the observers improved their estimation abilities by practicing against ship models mounted on a "lazy Susan". [15]

  7. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]

  8. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    The Euler equations can be generalized to any simple Lie algebra. [1] The original Euler equations come from fixing the Lie algebra to be s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} , with generators t 1 , t 2 , t 3 {\displaystyle {t_{1},t_{2},t_{3}}} satisfying the relation [ t a , t b ] = ϵ a b c t c {\displaystyle [t_{a},t_{b}]=\epsilon ...

  9. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action angles result from a type-2 canonical transformation where the generating function is Hamilton's characteristic function (not Hamilton's principal function ).Since the original Hamiltonian does not depend on time explicitly, the new Hamiltonian (,) is merely the old Hamiltonian (,) expressed in terms of the new canonical coordinates, which we denote as (the action angles, which are the ...