When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The first identity implies that any term in the NavierStokes equation that may be represented as the gradient of a scalar will disappear when the curl of the equation is taken. Commonly, pressure p and external acceleration g will be eliminated, resulting in (this is true in 2D as well as 3D):

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  4. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]

  5. Burgers vortex - Wikipedia

    en.wikipedia.org/wiki/Burgers_vortex

    Burgers vortex layer or Burgers vortex sheet is a strained shear layer, which is a two-dimensional analogue of Burgers vortex. This is also an exact solution of the NavierStokes equations, first described by Albert A. Townsend in 1951. [8] The velocity field (,,) expressed in the Cartesian coordinates are

  6. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    From the Womersley number it can be shown that the transient inertia force is represented by , and from the last term in the non-modified Navier-Stokes equation that viscous force is represented by (subscript one indicates that the boundary layer thickness is that of the transient boundary layer).

  7. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The term ⁠ 1 / ρ 2 ⁠ ∇ρ × ∇p is the baroclinic term. It accounts for the changes in the vorticity due to the intersection of density and pressure surfaces. The term ∇ × (⁠ ∇ ∙ τ / ρ ⁠), accounts for the diffusion of vorticity due to the viscous effects. The term ∇ × B provides for changes

  8. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  9. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged NavierStokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...