Search results
Results From The WOW.Com Content Network
Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to ribose 5-phosphate.Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which is the first compound in the pathway to have a completely formed purine ring system.
Guanosine monophosphate synthetase, (EC 6.3.5.2) also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate. [6]In the de novo synthesis of purine nucleotides, IMP is the branch point metabolite at which point the pathway diverges to the synthesis of either guanine or adenine nucleotides.
The Purine Nucleotide Cycle is a metabolic pathway in protein metabolism requiring the amino acids aspartate and glutamate. The cycle is used to regulate the levels of adenine nucleotides, in which ammonia and fumarate are generated. [2] AMP converts into IMP and the byproduct ammonia.
GMP synthesis starts with D-ribose 5′-phosphate, a product of the pentose phosphate pathway. The synthesis proceeds by the gradual formation of the purine ring on carbon-1 of ribose, with CO 2 , glutamine, glycine, aspartate and one-carbon derivatives of tetrahydrofolate donating various elements towards the building of the ring.
A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides ( purine and pyrimidine ) are synthesized from intermediates in their degradative pathway.
Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP.Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. [1]
De novo fatty-acid synthesis is regulated by two important enzymes, namely acetyl-CoA carboxylase and fatty acid synthase. [6] The enzyme acetyl CoA carboxylase is responsible for introducing a carboxyl group to acetyl CoA, rendering malonyl-CoA. Then, the enzyme fatty-acid synthase is responsible for turning malonlyl-CoA into fatty-acid chain.
Free guanine is salvaged in the same way except it requires hypoxanthine-guanine phosphoribosyltransferase. Defects in purine catabolism can result in a variety of diseases including gout, which stems from an accumulation of uric acid crystals in various joints, and adenosine deaminase deficiency, which causes immunodeficiency. [10] [11] [12]