Search results
Results From The WOW.Com Content Network
The theoretical fractal dimension for this fractal is 5/3 ≈ 1.67; its empirical fractal dimension from box counting analysis is ±1% [8] using fractal analysis software. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.
Each branch carries 3 branches (here 90° and 60°). The fractal dimension of the entire tree is the fractal dimension of the terminal branches. NB: the 2-branches tree has a fractal dimension of only 1. 1.5850: Sierpinski triangle: Also the limiting shape of Pascal's triangle modulo 2.
A fractal has an integer topological dimension, but in terms of the amount of space it takes up, it behaves like a higher-dimensional space. The Hausdorff dimension measures the local size of a space taking into account the distance between points, the metric. Consider the number N(r) of balls of radius at most r required to cover X completely.
Sierpiński Carpet - Infinite perimeter and zero area Mandelbrot set at islands The Mandelbrot set: its boundary is a fractal curve with Hausdorff dimension 2. (Note that the colored sections of the image are not actually part of the Mandelbrot Set, but rather they are based on how quickly the function that produces it diverges.)
For many well behaved fractals all these dimensions are equal; in particular, these dimensions coincide whenever the fractal satisfies the open set condition (OSC). [1] For example, the Hausdorff dimension , lower box dimension, and upper box dimension of the Cantor set are all equal to log(2)/log(3).
In fractal geometry, the Higuchi dimension (or Higuchi fractal dimension (HFD)) is an approximate value for the box-counting dimension of the graph of a real-valued function or time series. This value is obtained via an algorithmic approximation so one also talks about the Higuchi method .
Fractal branching of trees. Fractal analysis is assessing fractal characteristics of data.It consists of several methods to assign a fractal dimension and other fractal characteristics to a dataset which may be a theoretical dataset, or a pattern or signal extracted from phenomena including topography, [1] natural geometric objects, ecology and aquatic sciences, [2] sound, market fluctuations ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.