When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hubble volume - Wikipedia

    en.wikipedia.org/wiki/Hubble_volume

    Visualization of the whole observable universe.The inner blue ring indicates the approximate size of the Hubble volume. In cosmology, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, Hubble bubble, subluminal sphere, causal sphere and sphere of causality is a spherical region of the observable universe surrounding an observer beyond which objects recede from that ...

  3. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    H 0 is Hubble's constant and corresponds to the value of H (often termed the Hubble parameter which is a value that is time dependent and which can be expressed in terms of the scale factor) in the Friedmann equations taken at the time of observation denoted by the subscript 0. This value is the same throughout the universe for a given comoving ...

  4. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    Hubble radius, Hubble sphere (not to be confused with a Hubble bubble), Hubble volume, or Hubble horizon is a conceptual horizon defining the boundary between particles that are moving slower and faster than the speed of light relative to an observer at one given time. Note that this does not mean the particle is unobservable; the light from ...

  5. Cosmic distance ladder - Wikipedia

    en.wikipedia.org/wiki/Cosmic_distance_ladder

    The observational result of Hubble's law, the proportional relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result ...

  6. Age of the universe - Wikipedia

    en.wikipedia.org/wiki/Age_of_the_universe

    The first observation that one can make from this formula is that it is the Hubble parameter that controls that age of the universe, with a correction arising from the matter and energy content. So a rough estimate of the age of the universe comes from the Hubble time, the inverse of the Hubble parameter.

  7. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law. Applied to a fluid with a given equation of state , the Friedmann equations yield the time evolution and geometry of the universe as a function of the fluid density.

  8. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    Most large lumps of matter, such as galaxies, are nearly comoving, so that their peculiar velocities (owing to gravitational attraction) are small compared to their Hubble-flow velocity seen by observers in moderately nearby galaxies, (i.e. as seen from galaxies just outside the group local to the observed "lump of matter").

  9. Recessional velocity - Wikipedia

    en.wikipedia.org/wiki/Recessional_velocity

    where is the Hubble constant, is the proper distance, is the object's recessional velocity, and is the object's peculiar velocity. The recessional velocity of a galaxy can be calculated from the redshift observed in its emitted spectrum. One application of Hubble's law is to estimate distances to galaxies based on measurements of their ...