Search results
Results From The WOW.Com Content Network
A cloud base (or the base of the cloud) is the lowest altitude of the visible portion of a cloud. It is traditionally expressed either in metres or feet above mean sea level or above a planetary surface, or as the pressure level corresponding to this altitude in hectopascals (hPa, equivalent to the millibar ).
Convective cloud's thickness, between its base and top, shown on the background scale at different stages of its life The cloud height , more commonly known as cloud thickness or depth , is the distance between the cloud base and the cloud top . [ 1 ]
A mesoscale convective complex (MCC) is a unique kind of mesoscale convective system which is defined by characteristics observed in infrared satellite imagery. Their area of cold cloud tops exceeds 100,000 square kilometres (39,000 sq mi) with temperature less than or equal to −32 °C (−26 °F); and an area of cloud top of 50,000 square ...
A mesoscale convective complex has either an area of cloud top of 100,000 km 2 or greater with temperature less than or equal to −32 °C, or an area of cloud top of 50,000 km 2 with temperature less than or equal to −52 °C. Size definitions must be met for 6 hours or greater.
When there is mechanical lift to saturation, cloud base begins at the lifted condensation level (LCL); absent forcing, cloud base begins at the convective condensation level (CCL) where heating from below causes spontaneous buoyant lifting to the point of condensation when the convective temperature is reached.
The convective condensation level (CCL) represents the height (or pressure) where an air parcel becomes saturated when heated from below and lifted adiabatically due to buoyancy. In the atmosphere, assuming a constant water vapor mixing ratio, the dew point temperature (the temperature where the relative humidity is 100%) decreases with ...
Examples include the descent rate of raindrops, convective clouds, simplifications of the atmospheric radiative transfer on the basis of atmospheric radiative transfer codes, and cloud microphysics. Radiative parameterizations are important to both atmospheric and oceanic modeling alike.
the cloud IR emissivity, with values between 0 and 1, with a global average around 0.7; the effective cloud amount, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5; the cloud (visible) optical depth varies within a range of 4 and 10. the cloud water path for the liquid and solid (ice) phases of the cloud particles