When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Forces on sails - Wikipedia

    en.wikipedia.org/wiki/Forces_on_sails

    The apparent wind on the sail creates a total aerodynamic force, which may be resolved into drag—the force component in the direction of the apparent wind—and lift—the force component normal (90°) to the apparent wind. Depending on the alignment of the sail with the apparent wind, lift or drag may be the predominant propulsive component.

  3. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    Consider fluid flow around an airfoil. The flow of the fluid around the airfoil gives rise to lift and drag forces. By definition, lift is the force that acts on the airfoil normal to the apparent fluid flow speed seen by the airfoil. Drag is the forces that acts tangential to the apparent fluid flow speed seen by the airfoil.

  4. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  5. Sail - Wikipedia

    en.wikipedia.org/wiki/Sail

    The apparent wind on the sail creates a total aerodynamic force, which may be resolved into drag, the force component in the direction of the apparent wind and lift, the force component normal (90°) to the apparent wind. Depending on the alignment of the sail with the apparent wind, lift or drag may be the predominant propulsive component.

  6. Wind-powered vehicle - Wikipedia

    en.wikipedia.org/wiki/Wind-powered_vehicle

    The apparent wind on the sail creates a total aerodynamic force, which may be resolved into drag—the force component in the direction of the apparent wind—and lift—the force component normal (90°) to the apparent wind. Depending on the alignment of the sail with the apparent wind, lift or drag may be the predominant propulsive component.

  7. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    where P is the power, F is the force vector, and v is the velocity of the moving wind turbine part. The force F is generated by the wind's interaction with the blade. The magnitude and distribution of this force is the primary focus of wind-turbine aerodynamics. The most familiar type of aerodynamic force is drag.

  8. Ship resistance and propulsion - Wikipedia

    en.wikipedia.org/wiki/Ship_resistance_and_propulsion

    For thousands of years ship designers and builders of sailing vessels used rules of thumb based on the midship-section area to size the sails for a given vessel. The hull form and sail plan for the clipper ships, for example, evolved from experience, not from theory. It was not until the advent of steam power and the construction of large iron ...

  9. Betz's law - Wikipedia

    en.wikipedia.org/wiki/Betz's_law

    In order to keep the wind moving through the turbine, there has to be some wind movement, however small, on the other side with some wind speed greater than zero. Betz's law shows that as air flows through a certain area, and as wind speed slows from losing energy to extraction from a turbine, the airflow must distribute to a wider area.