When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2

  3. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    For heat flow, the heat equation follows from the physical laws of conduction of heat and conservation of energy (Cannon 1984). By Fourier's law for an isotropic medium, the rate of flow of heat energy per unit area through a surface is proportional to the negative temperature gradient across it:

  4. Thermal energy - Wikipedia

    en.wikipedia.org/wiki/Thermal_energy

    In addition to the microscopic kinetic energies of its molecules, the internal energy of a body includes chemical energy belonging to distinct molecules, and the global joint potential energy involved in the interactions between molecules and suchlike. [6] Thermal energy may be viewed as contributing to internal energy or to enthalpy.

  5. kT (energy) - Wikipedia

    en.wikipedia.org/wiki/KT_(energy)

    kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on ⁠ E ...

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas. E = 3 2 n R T {\displaystyle E={\frac {3}{2}}nRT} This corresponds to the kinetic energy of n moles of a monoatomic gas having 3 degrees of freedom ; x , y , z .

  7. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    According to the equipartition of energy this means that there is a thermal energy of ⁠ 3 / 2 ⁠ kT per atom. This corresponds very well with experimental data. The thermal energy can be used to calculate the root-mean-square speed of the atoms, which turns out to be inversely proportional to the square root of the atomic mass.

  8. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The heat energy that is supplied may end up as kinetic energy (energy of motion) and potential energy (energy stored in force fields), both at macroscopic and atomic scales. Then the change in temperature will depend on the particular path that the system followed through its phase space between the initial and final states.

  9. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following: