When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. [ a ] It is particularly useful to mitigate the problem of multicollinearity in linear regression , which commonly occurs in models with large numbers of parameters. [ 3 ]

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    An important difference between lasso regression and Tikhonov regularization is that lasso regression forces more entries of to actually equal 0 than would otherwise. In contrast, while Tikhonov regularization forces entries of w {\displaystyle w} to be small, it does not force more of them to be 0 than would be otherwise.

  4. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A simple form of regularization applied to integral equations (Tikhonov regularization) is essentially a trade-off between fitting the data and reducing a norm of the solution. More recently, non-linear regularization methods, including total variation regularization, have become popular.

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...

  7. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Regularization by spectral filtering has been used to find stable solutions to problems such as those discussed above by addressing ill-posed matrix inversions (see for example Filter function for Tikhonov regularization). In many cases the regularization function acts on the input (or kernel) to ensure a bounded inverse by eliminating small ...

  8. Manifold regularization - Wikipedia

    en.wikipedia.org/wiki/Manifold_regularization

    Manifold regularization is a type of regularization, a family of techniques that reduces overfitting and ensures that a problem is well-posed by penalizing complex solutions. In particular, manifold regularization extends the technique of Tikhonov regularization as applied to Reproducing kernel Hilbert spaces (RKHSs).

  9. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Many algorithms exist to prevent overfitting. The minimization algorithm can penalize more complex functions (known as Tikhonov regularization), or the hypothesis space can be constrained, either explicitly in the form of the functions or by adding constraints to the minimization function (Ivanov regularization).