Search results
Results From The WOW.Com Content Network
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The stress–strain curve for a ductile material can be approximated using the Ramberg–Osgood equation. [2] This equation is straightforward to implement, and only requires the material's yield strength, ultimate strength, elastic modulus, and percent elongation.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.
In polycrystalline specimens, the yield strength of each grain is different depending on its maximum Schmid factor, which indicates the operational slip system(s). [5] The macroscopically observed yield stress will be related to the material's CRSS by an average Schmid factor, which is roughly 1/3.06 for FCC and 1/2.75 for body-centered cubic ...
As shown in the equations above, the use of the von Mises criterion as a yield criterion is only exactly applicable when the following material properties are isotropic, and the ratio of the shear yield strength to the tensile yield strength has the following value: [10]
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
In solid mechanics, the tangent modulus is the slope of the stress–strain curve at any specified stress or strain. Below the proportional limit (the limit of the linear elastic regime) the tangent modulus is equivalent to Young's modulus. Above the proportional limit the tangent modulus varies with strain and is most accurately found from ...
At dislocation densities of 10 14 dislocations/m 2 or higher, the strength of the material becomes high once again. Also, the dislocation density cannot be infinitely high, because then the material would lose its crystalline structure. [citation needed] This is a schematic illustrating how the lattice is strained by the addition of ...