When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    The absorption coefficient for spectral flux (a beam of radiation with a single wavelength, [W/m 2 /μm]) differs from the absorption coefficient for spectral intensity [W/sr/m 2 /μm] used in Schwarzschild's equation. Integration of an absorption coefficient over a path from s 1 and s 2 affords the optical thickness (τ) of that path, a ...

  3. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Gustav Kirchhoff (1824–1887) . In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium.

  4. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    The heat equation is an important partial differential equation that describes the distribution of heat (or temperature variation) in a given region over time. In some cases, exact solutions of the equation are available; [ 26 ] in other cases the equation must be solved numerically using computational methods such as DEM-based models for ...

  5. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection. The primary method by which the Sun transfers heat to the Earth is thermal radiation. This energy is partially absorbed and scattered in the atmosphere, the latter process being the reason why the sky is visibly blue. [3]

  6. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Earth has an albedo of 0.3, meaning that 30% of the solar radiation that hits the planet gets scattered back into space without absorption. The effect of albedo on temperature can be approximated by assuming that the energy absorbed is multiplied by 0.7, but that the planet still radiates as a black body (the latter by definition of ...

  8. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Solutions to the equation of radiative transfer form an enormous body of work. The differences however, are essentially due to the various forms for the emission and absorption coefficients. If scattering is ignored, then a general steady state solution in terms of the emission and absorption coefficients may be written:

  9. Absorptance - Wikipedia

    en.wikipedia.org/wiki/Absorptance

    In the study of heat transfer, absorptance of the surface of a material is its effectiveness in absorbing radiant energy. It is the ratio of the absorbed to the incident radiant power . [ 1 ]