When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    Top: The formation of a real image using a convex lens. Bottom: The formation of a real image using a concave mirror. In both diagrams, f is the focal point, O is the object, and I is the image. Solid blue lines indicate light rays. It can be seen that the image is formed by actual light rays and thus can form a visible image on a screen placed ...

  3. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.

  4. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...

  5. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    A burning apparatus consisting of two biconvex lens. A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction.A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis.

  6. Virtual image - Wikipedia

    en.wikipedia.org/wiki/Virtual_image

    The magnification of the virtual image formed by the plane mirror is 1. Top: The formation of a virtual image using a diverging lens. Bottom: The formation of a virtual image using a convex mirror. In both diagrams, f is the focal point, O is the object, and I is the virtual image, shown in grey. Solid blue lines indicate (real) light rays and ...

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    As with mirrors, upright images produced by a single lens are virtual, while inverted images are real. [46] Lenses suffer from aberrations that distort images. Monochromatic aberrations occur because the geometry of the lens does not perfectly direct rays from each object point to a single point on the image, while chromatic aberration occurs ...

  8. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The lens is moved until a sharp image is formed on the screen. In this case ⁠ 1 / u ⁠ is negligible, and the focal length is then given by . Determining the focal length of a concave lens is somewhat more difficult. The focal length of such a lens is defined as the point at which the spreading beams of light meet when they are extended ...

  9. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    In general, two types of lenses exist: convex lenses, which cause parallel light rays to converge, and concave lenses, which cause parallel light rays to diverge. The detailed prediction of how images are produced by these lenses can be made using ray-tracing similar to curved mirrors.