When.com Web Search

  1. Ad

    related to: magnet and conductor in motion

Search results

  1. Results From The WOW.Com Content Network
  2. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighborhood of the magnet ...

  3. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the ...

  4. Hering's Paradox - Wikipedia

    en.wikipedia.org/wiki/Hering's_Paradox

    Under these circumstances, there is rest induction due to the movement of the magnet (at the front edge of the magnet), and beyond that, the magnet is also a moving conductor. The double function of the magnet as a conductor at motion on the one hand, and as the root cause for the magnetic field on the other hand raises an essential question ...

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .

  6. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The Feynman Lectures on Physics (vol. 2, ch. 13–6) uses this method to derive the magnetic force on charge in parallel motion next to a current-carrying wire. See also Haskell [8] and Landau. [9] If the charge instead moves perpendicular to a current-carrying wire, electrostatics cannot be used to derive the magnetic force.

  7. Faraday paradox - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox

    Since the force on charges expressed by the Lorentz equation depends upon the relative motion of the magnetic field (i.e. the laboratory frame) to the conductor where the EMF is located it was speculated that in the case when the magnet rotates with the disk but a voltage still develops, the magnetic field (i.e. the laboratory frame) must ...

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    For example, consider a conductor moving in the field of a magnet. [8] In the frame of the magnet, that conductor experiences a magnetic force. But in the frame of a conductor moving relative to the magnet, the conductor experiences a force due to an electric field. The motion is exactly consistent in these two different reference frames, but ...

  9. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...