When.com Web Search

  1. Ad

    related to: hyperbolic manifolds and discrete groups of numbers worksheet 2

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_manifold

    In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds , respectively.

  3. Hyperbolic group - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_group

    Generalising the example of the modular group a Fuchsian group is a group admitting a properly discontinuous action on the hyperbolic plane (equivalently, a discrete subgroup of ()). The hyperbolic plane is a δ {\displaystyle \delta } -hyperbolic space and hence the Svarc—Milnor lemma tells us that cocompact Fuchsian groups are hyperbolic.

  4. Arithmetic hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_hyperbolic_3...

    The Weeks manifold is the hyperbolic three-manifold of smallest volume [3] and the Meyerhoff manifold is the one of next smallest volume. The complement in the three-sphere of the figure-eight knot is an arithmetic hyperbolic three-manifold [4] and attains the smallest volume among all cusped hyperbolic three-manifolds. [5]

  5. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    As a result, the universal cover of any closed manifold M of constant negative curvature −1, which is to say, a hyperbolic manifold, is H n. Thus, every such M can be written as H n ‍ / ‍ Γ, where Γ is a torsion-free discrete group of isometries on H n. That is, Γ is a lattice in SO + (n, 1).

  6. (G, X)-manifold - Wikipedia

    en.wikipedia.org/wiki/(G,_X)-manifold

    In geometry, if X is a manifold with an action of a topological group G by analytical diffeomorphisms, the notion of a (G, X)-structure on a topological space is a way to formalise it being locally isomorphic to X with its G-invariant structure; spaces with a (G, X)-structure are always manifolds and are called (G, X)-manifolds.

  7. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation ...

  8. Relatively hyperbolic group - Wikipedia

    en.wikipedia.org/wiki/Relatively_hyperbolic_group

    In mathematics, relatively hyperbolic groups form an important class of groups of interest for geometric group theory.The main purpose in their study is to extend the theory of Gromov-hyperbolic groups to groups that may be regarded as hyperbolic assemblies of subgroups , called peripheral subgroups, in a way that enables "hyperbolic reduction" of problems for to problems for the s.

  9. Geometric group theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_group_theory

    Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...