Search results
Results From The WOW.Com Content Network
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. [1] In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimuli, and times.
Internal validity, therefore, is more a matter of degree than of either-or, and that is exactly why research designs other than true experiments may also yield results with a high degree of internal validity. In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study.
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world. [13] [14]
Internal and external reliability and validity explained. Uncertainty models, uncertainty quantification, and uncertainty processing in engineering; The relationships between correlational and internal consistency concepts of test reliability; The problem of negative reliabilities
Ecological validity, the ability to generalize study findings to the real world, is a subcategory of external validity. [ 6 ] Another example highlighting the differences between these terms is from an experiment that studied pointing [ 7 ] —a trait originally attributed uniquely to humans—in captive chimpanzees.
In qualitative research, a member check, also known as informant feedback or respondent validation, is a technique used by researchers to help improve the accuracy, credibility, validity, and transferability (also known as applicability, internal validity, [1] or fittingness) of a study. [2]
For premium support please call: 800-290-4726 more ways to reach us
Internal validity – Extent to which a piece of evidence supports a claim about cause and effect; Model identification – Statistical property which a model must satisfy to allow precise inference; Overfitting – Flaw in mathematical modelling; Perplexity – Concept in information theory