Search results
Results From The WOW.Com Content Network
The term monotonic transformation (or monotone transformation) may also cause confusion because it refers to a transformation by a strictly increasing function. This is the case in economics with respect to the ordinal properties of a utility function being preserved across a monotonic transform (see also monotone preferences ). [ 5 ]
Then F and G form a monotone Galois connection between the power set of X and the power set of Y, both ordered by inclusion ⊆. There is a further adjoint pair in this situation: for a subset M of X, define H(M) = {y ∈ Y | f −1 {y} ⊆ M}. Then G and H form a monotone Galois connection between the power set of Y and the power set of X.
The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics. For example, in classical analysis they occur in the proof of the positivity of integrals involving Bessel functions or the positivity of Cesàro means of certain Jacobi series. [6]
In mathematics, the concept of a residuated mapping arises in the theory of partially ordered sets.It refines the concept of a monotone function.. If A, B are posets, a function f: A → B is defined to be monotone if it is order-preserving: that is, if x ≤ y implies f(x) ≤ f(y).
For instance, the function that maps a natural number to its successor is clearly monotone with respect to the natural order. Any function from a discrete order, i.e. from a set ordered by the identity order "=", is also monotone. Mapping each natural number to the corresponding real number gives an example for an order embedding.
A map : is called an open map or a strongly open map if it satisfies any of the following equivalent conditions: Definition: f : X → Y {\displaystyle f:X\to Y} maps open subsets of its domain to open subsets of its codomain; that is, for any open subset U {\displaystyle U} of X {\displaystyle X} , f ( U ) {\displaystyle f(U)} is an open ...
Given two partially ordered sets (S, ≤) and (T, ≼), a function : is called order-preserving, or monotone, or isotone, if for all ,, implies f(x) ≼ f(y). If ( U , ≲) is also a partially ordered set, and both f : S → T {\displaystyle f:S\to T} and g : T → U {\displaystyle g:T\to U} are order-preserving, their composition g ∘ f : S ...
Besides the previous representation results, there are some other statements that can be made about complete lattices, or that take a particularly simple form in this case. An example is the Knaster–Tarski theorem, which states that the set of fixed points of a monotone function on a complete lattice is again a complete lattice. This is ...