Search results
Results From The WOW.Com Content Network
In the case of a completely monotonic function, the function and its derivatives must be alternately non-negative and non-positive in its domain of definition which would imply that function and its derivatives are alternately monotonically increasing and monotonically decreasing functions.
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...
The term monotonic transformation (or monotone transformation) may also cause confusion because it refers to a transformation by a strictly increasing function. This is the case in economics with respect to the ordinal properties of a utility function being preserved across a monotonic transform (see also monotone preferences ). [ 5 ]
If is a compact topological space, and () is a monotonically increasing sequence (meaning () + for all and ) of continuous real-valued functions on which converges pointwise to a continuous function :, then the convergence is uniform.
If a sequence is either increasing or decreasing it is called a monotone sequence. This is a special case of the more general notion of a monotonic function . The terms nondecreasing and nonincreasing are often used in place of increasing and decreasing in order to avoid any possible confusion with strictly increasing and strictly decreasing ...
A chain in this partial order is a monotonically increasing subsequence, and an antichain is a monotonically decreasing subsequence. By Mirsky's theorem, either there is a chain of length r , or the sequence can be partitioned into at most r − 1 antichains; but in that case the largest of the antichains must form a decreasing subsequence with ...
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...