Search results
Results From The WOW.Com Content Network
A simple polygon is monotone with respect to a line L, if any line orthogonal to L intersects the polygon at most twice. A monotone polygon can be split into two monotone chains. A polygon that is monotone with respect to the y-axis is called y-monotone. A monotone polygon with n vertices can be triangulated in O(n) time. Assuming a given ...
Breaking a polygon into monotone polygons. A simple polygon may be easily cut into monotone polygons in O(n log n) time. However, since a triangle is a monotone polygon, polygon triangulation is in fact cutting a polygon into monotone ones, and it may be performed for simple polygons in O(n) time with a complex algorithm. [6]
It has 10 chapters, whose topics include the original art gallery theorem and Fisk's triangulation-based proof; rectilinear polygons; guards that can patrol a line segment rather than a single point; special classes of polygons including star-shaped polygons, spiral polygons, and monotone polygons; non-simple polygons; prison yard problems, in ...
In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is ∃ R {\displaystyle \exists \mathbb {R} } -complete , as is the version where the guards are restricted to the edges of the polygon. [ 10 ]
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.
Since every tree with more than one vertex has at least two leaves, every triangulated polygon with more than one triangle has at least two ears. Thus, the two ears theorem is equivalent to the fact that every simple polygon has a triangulation. [2] Triangulation algorithms based on this principle have been called ear-clipping algorithms ...
And Delaunay triangulation is clearly applicable and relevant to polygon triangulation. Please don't remove that note. 95.25.208.67 18:54, 19 February 2012 (UTC) Delaunay triangulation is a completely different problem from polygon triangulation; it is a form of point set triangulation.
In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. [1] That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the ...