When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The architecture of vision transformer. An input image is divided into patches, each of which is linearly mapped through a patch embedding layer, before entering a standard Transformer encoder. A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text ...

  3. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    Vision Transformer architecture. The Rep <CLS> output vector is used as the image encoding for CLIP. The image encoding models used in CLIP are typically vision transformers (ViT). The naming convention for these models often reflects the specific ViT architecture used.

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  5. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    The name "Transformer" was picked because Jakob Uszkoreit, one of the paper's authors, liked the sound of that word. [9] An early design document was titled "Transformers: Iterative Self-Attention and Processing for Various Tasks", and included an illustration of six characters from the Transformers animated show. The team was named Team ...

  6. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    A common algorithmic metric for assessing image quality and diversity is the Inception Score (IS), which is based on the distribution of labels predicted by a pretrained Inceptionv3 image classification model when applied to a sample of images generated by the text-to-image model. The score is increased when the image classification model ...

  7. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Other than language models, Vision MoE [33] is a Transformer model with MoE layers. They demonstrated it by training a model with 15 billion parameters. MoE Transformer has also been applied for diffusion models. [34] A series of large language models from Google used MoE. GShard [35] uses MoE with up to top-2 experts per layer. Specifically ...

  8. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    Human vision examines a sequence of focal points (directed by saccades), processing only a fraction of the scene at its highest resolution. Capsnets build on inspirations from cortical minicolumns (also called cortical microcolumns) in the cerebral cortex. A minicolumn is a structure containing 80-120 neurons, with a diameter of about 28-40 μm ...

  9. DALL-E - Wikipedia

    en.wikipedia.org/wiki/DALL-E

    This is necessary as the Transformer does not directly process image data. [22] The input to the Transformer model is a sequence of tokenized image caption followed by tokenized image patches. The image caption is in English, tokenized by byte pair encoding (vocabulary size 16384), and can be up to 256 tokens long. Each image is a 256×256 RGB ...