Search results
Results From The WOW.Com Content Network
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
Pyramid match kernel [13] is a fast algorithm (linear complexity instead of classic one in quadratic complexity) kernel function (satisfying Mercer's condition) which maps the BoW features, or set of features in high dimension, to multi-dimensional multi-resolution histograms. An advantage of these multi-resolution histograms is their ability ...
Match each point from the known shape to a point on an unknown shape. To minimize the cost of matching, first choose a transformation (e.g. affine, thin plate spline, etc.) that warps the edges of the known shape to the unknown (essentially aligning the two shapes). Then select the point on the unknown shape that most closely corresponds to ...
Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.
An example of an algorithm that employs the statistical properties of the images is histogram matching. This is a classic algorithm for color transfer, but it can suffer from the problem that it is too precise so that it copies very particular color quirks from the target image, rather than the general color characteristics, giving rise to ...
Image rectification is used in computer stereo vision to simplify the problem of finding matching points between images (i.e. the correspondence problem), and in geographic information systems (GIS) to merge images taken from multiple perspectives into a common map coordinate system.
Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [ 2 ] navigation of mobile robots , [ 3 ] or edge detection in images.
Otsu's method performs well when the histogram has a bimodal distribution with a deep and sharp valley between the two peaks. [ 6 ] Like all other global thresholding methods, Otsu's method performs badly in case of heavy noise, small objects size, inhomogeneous lighting and larger intra-class than inter-class variance. [ 7 ]