Search results
Results From The WOW.Com Content Network
Failed aluminium electrolytic capacitors with open vents in the top of the can, and visible dried electrolyte residue (reddish-brown color) The capacitor plague was a problem related to a higher-than-expected failure rate of non-solid aluminium electrolytic capacitors between 1999 and 2007, especially those from some Taiwanese manufacturers, [1] [2] due to faulty electrolyte composition that ...
A sudden fail-open fault can cause multiple secondary failures if it is fast and the circuit contains an inductance; this causes large voltage spikes, which may exceed 500 volts. A broken metallisation on a chip may thus cause secondary overvoltage damage. [1] Thermal runaway can cause sudden failures including melting, fire or explosions.
Dielectric absorption is the name given to the effect by which a capacitor, that has been charged for a long time, discharges only incompletely when briefly discharged.. Although an ideal capacitor would remain at zero volts after being discharged, real capacitors will develop a small voltage from time-delayed dipole discharging, [1] a phenomenon that is also called dielectric relaxation ...
Welcome back to work if you got Monday off. And, well, sorry if you didn't.
Since intermittent faults are not easily repeatable, it is more difficult to conduct a failure analysis for them, understand their root causes, or isolate their failure site than it is for permanent failures. [1] Intermittent failures can be a cause of no-fault-found (NFF) occurrences in electronic products and systems. NFF implies that a ...
Ideally, by the time the capacitor runs out of charge, the switching event has finished, so that the load can draw full current at normal voltage from the power supply and the capacitor can recharge. The best way to reduce switching noise is to design a PCB as a giant capacitor by sandwiching the power and ground planes across a dielectric ...
A discharged or partially charged capacitor appears as a short circuit to the source when the source voltage is higher than the potential of the capacitor. A fully discharged capacitor will take approximately 5 RC time periods to fully charge; during the charging period, instantaneous current can exceed steady-state current by a substantial ...
The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or