Search results
Results From The WOW.Com Content Network
Efferent (from Latin ex + ferre) means "outgoing", in this case meaning carrying blood out away from the glomerulus. The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that has already been filtered.
When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...
Glomerular mesangial cells structurally support the tufts. Blood enters the capillaries of the glomerulus by a single arteriole called an afferent arteriole and leaves by an efferent arteriole. [3] The capillaries consist of a tube lined by endothelial cells with a central lumen. The gaps between these endothelial cells are called fenestrae.
Central to the physiologic maintenance of GFR is the differential basal tone of the afferent (input) and efferent (output) arterioles (see diagram). In other words, the filtration rate is dependent on the difference between the higher blood pressure created by vasoconstriction of the afferent arteriole versus the lower blood pressure created by ...
The vascular pole is the side with the afferent arteriole and efferent arteriole. The tubular pole, is the side with the proximal convoluted tubule. Inside the capsule, the layers are as follows, from outside to inside: [citation needed] Parietal layer—A single layer of simple squamous epithelium. Does not function in filtration.
The renal corpuscle is composed of two structures, the glomerulus and the Bowman's capsule. [3] The glomerulus is a small tuft of capillaries containing two cell types. . Endothelial cells, which have large fenestrae, are not covered by dia
The afferent arterioles, then, enter Bowman's capsule and end in the glomerulus. From each glomerulus, the corresponding efferent arteriole arises and then exits the capsule near the point where the afferent arteriole enters. Distally, efferent arterioles branch out to form dense plexuses (i.e., capillary beds) around their adjacent renal tubules.
Each afferent arteriole divides into several renal glomeruli. Then these glomeruli join into the efferent arteriole, into which filtered blood goes from the nephrons. In nephrons with a long loop of Henle, the efferent arterioles branch, forming straight vessels called vasa recta, which descend into the medulla. The descending vasa recta ...