Search results
Results From The WOW.Com Content Network
Cohen's kappa coefficient (κ, lowercase Greek kappa) is a statistic that is used to measure inter-rater reliability (and also intra-rater reliability) for qualitative (categorical) items. [1] It is generally thought to be a more robust measure than simple percent agreement calculation, as κ takes into account the possibility of the agreement ...
Inter-method reliability assesses the degree to which test scores are consistent when there is a variation in the methods or instruments used. This allows inter-rater reliability to be ruled out. When dealing with forms, it may be termed parallel-forms reliability. [6]
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures.
A useful inter-rater reliability coefficient is expected (a) to be close to 0 when there is no "intrinsic" agreement and (b) to increase as the "intrinsic" agreement rate improves. Most chance-corrected agreement coefficients achieve the first objective. However, the second objective is not achieved by many known chance-corrected measures. [4]
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...
where is the separation index of the set of estimates of , which is analogous to Cronbach's alpha; that is, in terms of classical test theory, is analogous to a reliability coefficient. Specifically, the separation index is given as follows:
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.