Ad
related to: parallelogram rule of addition examples
Search results
Results From The WOW.Com Content Network
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
In the example shown in the diagram opposite, a single force acts at the application point H on a free rigid body. The body has the mass m {\displaystyle m} and its center of mass is the point C . In the constant mass approximation, the force causes changes in the body motion described by the following expressions:
This addition method is sometimes called the parallelogram rule because a and b form the sides of a parallelogram and a + b is one of the diagonals. If a and b are bound vectors that have the same base point, this point will also be the base point of a + b. One can check geometrically that a + b = b + a and (a + b) + c = a + (b + c).
When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...
The composition of two translations is given by the head-to-tail parallelogram rule of vector addition; and taking the inverse amounts to reversing direction. In Hamilton's theory of turns, we have a generalization of such a picture from the Abelian translation group to the non-Abelian SU(2) .
The figure shows examples of the various cases for a planar quadrilateral linkage. [4] Types of four-bar linkages, s: shortest link, l: longest link. The configuration of a quadrilateral linkage may be classified into three types: convex, concave, and crossing. In the convex and concave cases no two links cross over each other.
If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.